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Abstract: In the era of growing technologies and demand for more reliable products, comparative studies of products from 

different lines of manufacturing units have become essential. Due to the time-saving and cost-effectiveness properties, the joint 

Type-II censoring scheme is beneficial for dealing with such types of comparative studies. The inverse Chen distribution has the 

upside-down or unimodal failure rate function, and it is a suitable lifetime model in life testing and reliability theory. This article 

contains the Bayesian and classical estimations in the inverse Chen distribution under joint type-II censoring. The maximum 

likelihood estimators and the corresponding asymptotic confidence intervals of the unknown parameters are developed in the 

classical estimation approach. In the case of the Bayesian estimation approach, the Bayes estimators of the unknown parameters 

under the squared error loss function using gamma informative priors are computed. The Bayes estimates are calculated using 

Markov chain Monte Carlo (MCMC) techniques. Also, the highest posterior density (HPD) credible intervals of the unknown 

parameters are constructed using MCMC methods. To study various estimates developed in this article, a Monte Carlo simulation 

study is performed. To compare various estimates, the average estimate, mean squared error values along with the average length 

and the coverage probabilities are considered. Finally, a real-life problem is analysed to show the applicability of the proposed 

estimation methods. 

Keywords: Inverse Chen Distribution, Joint Type-II Censoring, Maximum Likelihood Estimation, Bayesian Estimation, 

Monte Carlo Simulation 

 

1. Introduction 

The data in the reliability and survival analysis frequently 

follows a unimodal or upside-down bathtub-shaped failure 

rate function in real-world scenarios. For such types of 

problems, researchers developed inverted distributions which 

possess the upside-down bathtub-shaped failure rate function. 

Srivastava and Srivastava introduced a two-parameter inverse 

Chen distribution (ICD) and obtained the maximum 

likelihood estimate and asymptotic confidence interval of the 

parameters [22]. Joshi and Pandit estimated the stress strength 

of the �-out-of-� system for ICD [15]. Agiwal obtained the 

Bayes estimates of stress-strength reliability for ICD [1]. He 

obtained different properties of ICD such as failure rate 

function, 
thr  moment, quantile function, mode, Renyi 

entropy, and stress-strength reliability. He observed the 

unimodal failure rate and upside-down bathtub nature of the 

ICD. He derived the ML and Bayes estimates of the 

stress-strength reliability under the assumption that the ICD is 

a robust lifetime distribution. 

In recent times, various censoring schemes for different 

lifetime models have been studied by a number of 

researchers. For example, Kumar and Garg worked on the 

estimation of the parameters of generalised inverted 

Rayleigh distribution under random censoring [20], 

Chaturvedi and Vyas studied the estimation and testing 

procedures for Burr distribution under different censoring [7], 

Chaturvedi et al. discussed the statistical inference in a 

family of lifetime distributions based on progressively 

censored data [6], Krishna et al. estimated the stress-strength 

reliability of inverse Weibull distribution under progressive 

first failure censoring [17], Kishan and Kumar obtained the 
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Bayes estimates of the Lindley distribution under 

progressively censored data with binomial removals [16], 

Garg et al. studied the estimation of parameters of Lindley 

distribution under random censoring [10], Garg and Kumar 

obtained the estimates of ( )P Y X<  for generalized 

inverted exponential distribution under hybrid censored data 

[11], Dhamecha and Patel discussed the estimation of 

parameters of Kumaraswamy distribution under hybrid 

censoring [9]. Kumar and Kumar studied the estimation of 

(V )P U< for inverse Pareto distribution under progressive 

censoring [19], and many others. 

The probability density function (pdf) and cumulative 

density function (cdf), respectively, of inverse Chen 

distribution, are given as follows: 

1
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The corresponding failure rate function of inverse Chen 

distribution is given by 
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Hereafter, the inverse Chen distribution with parameters 

0α >  and 0θ >  is denoted by ICD ( , )α θ . 

As technology is growing in day-to-day life, the products are 

becoming more reliable, and experimenter gets long lifetime 

data. For studying such types of lifetime data, life testing, 

experiments are conducted to get knowledge of the reliability 

characteristics of different products. To study the reliability 

characteristics of these highly reliable products the life testing 

experiments became more time and money-consuming. In 

literature, numerous censoring schemes are developed to save 

time and money. In many industries, the products come from 

different production lines. To test the reliability of production 

units from different production lines, a comparative study is 

required. Most of the conventional censoring schemes cover the 

one-sample problem, while in today’s growing world of 

technologies, comparative studies are much needed. 

For comparing the manufactured unit of two different 

production lines, the joint type-II censoring (JTIIC) scheme 

was developed by Balakrishnan and Rasouli (2008). The 

experimenter can save time and money using the JTIIC 

scheme for the lifetime data of products obtained from two 

production lines. The real-life examples of using JTIIC 

scheme are, comparing the lifetimes of two insulated fluids 

under high voltage. Comparing the lifetimes of different solar 

panels assembled to provide electricity to the street lights 

alongside a highway, comparing the air conditioning systems 

of two boing jet planes and many more. After Balakrishnan 

and Rasouli [5] many researchers have studied the JTIIC 

scheme in recent years, see, for example, Ashour and 

Abo-Kasem studied two generalized exponential populations 

using Bayesian and non-Bayesian estimation methods [4]. 

Some recent works on the JTIIC scheme can be found in 

Al-Matrafi and Abd-Elmougod [2], Asar and Arabi-Belaghi 

[3], Goel and Krishna [13], and Krishna and Goel [18]. 

The JTIIC system can be explained such as a life testing 

experiment where two independent samples of sizes 1n  and 

2n  are drawn from two distinct product lines. The lifetimes of 

the N units are denoted by 
11 2, ,..., nX X X  and 

21 2, Y ,..., YnY  Now, let 1 2 ... NZ Z Z≤ ≤ ≤ denote the order 

statistic of the random variables 

( )
1 21 2 1 2, , ..., ; , Y ,..., Yn nX X X Y , such that 1 2N n n= + . Now, 

mathematically JTIIC is implemented as follows: Let N  

units be put on a life testing experiment. The failure times of 

the units 1 2, Z ,..., ZmZ  are recorded till the 
thm  failure 

occur. Here, m N<  is a pre-determined number of failures. 

In JTIIC the data is obtained as ( ),Z δ  where 

( )1 2, Z ,..., ZmZ Z=  are the failure times of the units and δ  

is defined as follows 

1 ; 1,2,...,

0

iZ X i m

otherwise
δ

∈ =
= 


 

Also, 1

1

m

m i

i

n δ
=

=∑ denotes the number of failures from X  

and ( )2

1

1

m

m i

i

n δ
=

= −∑  denotes the number of failures 

obtained from Y . The likelihood function of JTIIC is given as 

follows: 

{ } { } { } { } 2 21 11

1

(z, ) c ( ) g( ) F( ) G( )
mmi i

m
n nn n

i i m m
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L f z z z z
δ δδ
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To the best of our knowledge, no work has been done on the 

estimation of parameters of ICD under JTIIC to date. The rest of 

the article is organized in the following manner: Section 2 

contains the Classical estimation with maximum likelihood 

estimation and asymptotic confidence interval estimation. In 

section 3, the Bayes estimates of the unknown parameters are 

calculated under the squared error loss function. MCMC 

techniques are used to obtain the Bayes estimates of the unknown 

parameters. A simulation study is carried out in section 4 to 

compare the different estimates. To illustrate the real-life 

scenarios, real-life data is analyzed in section 5. Finally, 

conclusions are made on the basis of the above study in section 6. 
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2. Classical Estimation 

This section contains the classical estimation of the 

unknown parameters of the ICD under JTIIC. For the classical 

estimation, the maximum likelihood (ML) estimation method 

with their corresponding asymptotic confidence interval (ACI) 

estimates are calculated. 

2.1. Maximum Likelihood Estimation 

Consider 1n  units of product line A are put through a life 

testing experiment. The lifetimes of the 1n  units 

11 2, ,..., nX X X  are independent and identically (i.i.d.) 

distributed random variables from ICD 1( , )α θ  with the 

corresponding pdf ( )Xf x  and ( )XF x  defined in equations 

(1) and (2) respectively. Similarly, 2n units of the product line 

B, are put on a life testing experiment with the lifetimes 

21 2, Y ,..., YnY  i.i.d. random variables from ICD 2( , )α θ  with 

the corresponding pdf ( )Yg y  and cdf ( )YG y  given in 

equations (1) and (2), respectively. Now, let 

1 2 ... NZ Z Z≤ ≤ ≤  denote the order statistic of the random 

variables ( )
1 21 2 1 2, , ..., ; , Y ,..., Yn nX X X Y  such that 

1 2N n n= + . Now, let ( , ); i 1, 2,...,mi iz δ =  is the joint type-II 

censored sample obtained from ICD 1( , )α θ  and ICD 2( , )α θ . 

Using the pdf and cdf given in equations (1) and (2) the 

likelihood function given in (4) is obtained as follows: 

1 1 2 2

1 2 1 2

1 2

1

(1 ) (1 ) 1 1
( 1) ( 1)

1 2 1 2

1

1 2

( , , , , ) c 1 1

i i m m
z z z zi i m m

i i

m m

n n n n
m z e z e e e

i i

i

n nm
i

L z z e z e e e

c z

θ θ θ θθ θ
δ δ

α α α αθ θδ α α θ α θ α θ

θ α α

− − − −− −
− − −

       + − + − − −       − + − +       

=

−

       
       = − −       
              

=

∏

( )
1 1 2 2

1 2 1 2
1 (1 ) 1 1

( 1)

1

1 1

m m
z z zi m m

i i i

n n n n
m z e e e

i

e e e

θ θ θθ α δ δ α α αθ
− − −−

− −      + − + − − −      +       

=

   
   − −   
      

∏
 

The log-likelihood function is now obtained by taking the logarithm of the aforementioned equation and taking the following form: 
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To obtain the ML estimates of ��, �� and � we differentiate equation (5) with respect to ��, �� and � respectively and put 

them equal to zero. The three normal equations are obtained as follows: 
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From the above normal equations it is clear that we can not get the explicit solutions for the ML estimates, 1α̂ , 2α̂  and θ̂  of 

1α , 2α  and θ  respectively. To obtain the ML estimates we use some iterative methods such as the Newton-Raphson method etc. 

2.2. Asymptotic Confidence Interval 

Here, in this subsection, we obtain the asymptotic confidence intervals of 1α , 2α  and θ  using the observed Fisher 

information matrix. The observed Fisher information matrix under JTIIC is given as follows: 
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Here, 1α̂ , 2α̂  and θ̂  are the ML estimates of 1α , 2α  and θ  respectively. The elements of the observed Fisher 

information matrix are given by 
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The estimated variances of 1α̂ , 2α̂  and θ̂ are given as 
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The 100(1 )%γ−  asymptotic confidence intervals for 1 2( , , )α α θ  using the approximated standard normal distribution are 

given as 

1 1

21

ˆ( )

ˆ ˆ( )
P Z

Var
γ

α α

α

 − ≤
 
 

 & 
2 2

22

ˆ( )

ˆ ˆ( )
P Z

Var
γ

α α

α

 − ≤
 
 

 & 

2

ˆ( )

ˆˆ ( )
P Z

Var
γ

θ θ

θ

 − ≤
 
 

                   (8) 

Here, 

2

Z γ  is the upper 
2

γ
 percentile of standard normal distribution. 

3. Bayesian Estimation 

This section is devoted to calculating the Bayes estimates of 1α , 2α  and θ . The Bayes estimates are obtained using 

the squared error loss function (SELF). The Bayes estimate under SELF is the mean of the posterior distribution. To 

calculate the Bayes estimates of 1α , 2α  and θ  let us assume that 1α , 2α  and θ  have gamma priors with 

hyperparameters 1 1( , )a b , 2 2( , )a b  and 3 3( , )a b  respectively. The prior densities of the unknown parameters are given by: 
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The joint prior distribution of ��, �� and � is given by: 
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Now, the joint posterior distribution of ��, �� and � is given by: 
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From equation (9) the closed form solution for the Bayes estimates 1αɶ , 2αɶ  and θɶ  of 1α , 2α andθ cannot be calculated. 

Therefore, to calculate the Bayes estimate of unknown parameters, the MCMC techniques are used. 
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3.1. MCMC Techniques 

This subsection uses MCMC techniques to generate random numbers from the marginal posterior distribution functions. The 

Metropolis-Hastings algorithm is used to generate the random numbers from the marginal posterior distributions of 1α , 2α and

θ . The marginal posterior distributions of 1α , 2α and θ  are given as follows 
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From equations (10), (11) and (12) it is clear that the 

marginal distributions of 1α , 2α and θ  respectively do not 

follow a well known distribution. The MCMC techniques are 

used to generate the random sample from (10), (11) and (12). 

A detailed discussion about MCMC and M-H algorithm can 

be found in Metropolis and Ulam [21], Hastings [14] and 

Gelman et al. [12]. The steps for the Gibbs sampling are given 

below: 

Step 1. Start with initial guess (0)
1α , (0)

2α , 
(0)θ . 

Step 2. Generate (j)
1α  from ( )

1 1( | , )j dataα θΠ  given in (10) 

using M-H algorithm with proposal density as normal density. 

Step 3. Generate (j)
2α  from ( )

2 2( | , )j dataα θΠ  given in 

(11) using M-H algorithm with proposal density as normal 

density. 

Step 4. Generate 
( )jθ  from (j) (j)

3 1 2( | , , )dataθ α αΠ  given 

in (12) using M-H algorithm with proposal density as normal 

density. 

Step 5. For 1,2,...,j M=  Repeat steps 2-5, to get the 

sequence of the parameter 1α , 2α and θ  as 

11 12 1( , ,..., )Mα α α , 21 22 2( , ,..., )Mα α α , 1 2( , ,..., )Mθ θ θ . 

First 0M , 1 0' ; 1, 2,...,j s j Mα =  are discarded to generate 

a random sample from the stationary Markov chain 

distribution, which is often the posterior distribution, where 

0M  is known as the burn-in period. The following equations 

provide the Bayes estimates for the parameters 1α , 2α and 

θ  under SELF are given by 

0

1 1
0 1

1
ˆ

M

MH j

j M
M M

α α
= +

=
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j M
M M
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= +

=
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0
0 1

1ˆ
M

MH j

j M
M M

θ θ
= +

=
− ∑            (15) 

3.2. HPD Credible Intervals 

Here, the HPD credible interval for 1α , 2α and θ  are 

constructed using the algorithm proposed by Chen and Shao 

[8]. Let 
01(1) 1(2) 1( ), ,..., M Mα α α −  denote the ordered values of 

0 01( 1) 1( 2) 1( ), ,...,M M Mα α α+ + , then the 100(1 )%ξ−  HPD 

credible interval for 1α  is obtained as 1( ) 1( [(1 )M])( , )j j ξα α + − , 

here, j  is chosen such that 

0 01( [(1 )(M M )]) 1 1( [(1 )(M M )]) 1
1

( ) min ( )j j j j
j M

ξ ξγ
α α α α+ − − + − −≤ ≤

− = − , 

01,2,..., ( )j M M= − , where [ ]x  is the integer part of x . 

Similarly, the 100(1 )%ξ−  HPD credible interval for 2α  

and θ  is obtained as 2( ) 2( [(1 )M])( , )j j ξα α + − , 

( ) ( [(1 )M])( , )j j ξθ θ + − , where j  is chosen such that 

0 02( [(1 )(M M )]) 2 2( [(1 )(M M )]) 2
1

( ) min ( )j j j j
j M

ξ ξγ
α α α α+ − − + − −≤ ≤

− = − , 01,2,..., ( )j M M= − . 

0 0( [(1 )(M M )]) ( [(1 )(M M )])
1

( ) min ( )j j j j
j M

ξ ξγ
θ θ θ θ+ − − + − −≤ ≤

− = − , 01,2,..., ( )j M M= − . 

4. Simulation Study 

A simulation study to compare different estimates of the 

unknown parameters is carried out in this section. The average 

estimate (AE) and mean squared error (MSE) of the ML and 

Bayes estimates of the unknown parameters from ICD 1( , )α θ
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and ICD 2( , )α θ  under joint type-II censoring are calculated. 

For computing, the Bayes estimates informative priors are 

used. For the interval estimates, the average length (AL) and 

coverage probability (CP) of ACI and HPD credible intervals 

are calculated. For the simulation study, two sets of true values 

of the parameters are chosen, such as 

1 2( , , ) (0.5,0.75,1)α α θ =  and (0.75,1.5,1)  respectively. The 

values of hyperparameters are chosen in such a way that the 

mean of the prior density becomes equal to the true value of 

the parameter. For both the set of true values the values of 

hyperparameters are given by 1 2a = , 1 4b = , 2 3a = , 

2 4b = , 3 4a = , 3 4b =  and 1 3a = , 1 4b = , 2 3a = , 

2 2b = , 3 4a = , 3 4b =  respectively. To calculate the Bayes 

estimates using MCMC techniques 10,000  MCMC samples 

are generated and 2,000  are taken as a burn-in period. Different 

estimates obtained under different values of 1 2,n n  and m  are 

shown in Tables 1, 2, 3 and 4. 

From the simulation results obtained in Tables 1, 2, 3, and 

4. We can conclude that both ML and Bayes estimates 

provide good estimates of the unknown parameters of ICD in 

the case of joint type-II censored data with the MSEs less 

than 0.10 in all the cases. From Tables 1 and 3 we can say 

that when the sample size is increased, the MSEs of both ML 

and Bayes estimates decrease. The Bayes estimates perform 

better than ML estimates in view of MSEs. The obtained 

Bayes estimates provide lesser MSEs than the ML estimates. 

From Tables 2 and 4 we can say that the AL of both ACI and 

HPD credible intervals decreases when we increase the 

sample size. The HPD credible intervals provide lesser AL 

than the ACI. All the intervals attain their nominal level of 

significance. 

Table 1. The AEs and MSEs of the ML and Bayes estimates of 1 2,α α and θ  when 1 2( , , ) (0.5,0.75,1)α α θ = . 

1 2( , , )n n m  

��
 ��� �� 

MLE Bayes MLE Bayes MLE Bayes 

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE 

(10,15,18) 0.5249 0.0450 0.5318 0.0220 0.8117 0.0716 0.7943 0.0322 1.1200 0.0626 1.0573 0.0256 

(10,15,20) 0.5460 0.0646 0.5404 0.0240 0.8061 0.0690 0.7888 0.0322 1.1143 0.0627 1.0577 0.0276 

(15,20,26) 0.5128 0.0264 0.5236 0.0160 0.7750 0.0427 0.7731 0.0244 1.0860 0.0344 1.0458 0.0173 

(15,20,30) 0.5249 0.0260 0.5326 0.0160 0.7759 0.0440 0.7714 0.0255 1.0786 0.0318 1.0447 0.0169 

(20,25,34) 0.5099 0.0181 0.5206 0.0121 0.7760 0.0303 0.7753 0.0200 1.0610 0.0217 1.0322 0.0114 

(20,25,38) 0.5132 0.0179 0.5220 0.0124 0.7722 0.0293 0.7710 0.0196 1.0598 0.0222 1.0344 0.0128 

(25,30,42) 0.5082 0.0130 0.5172 0.0093 0.7695 0.0241 0.7698 0.0168 1.0485 0.0170 1.0267 0.0096 

(25,30,48) 0.5072 0.0141 0.5141 0.0104 0.7644 0.0218 0.7631 0.0159 1.0415 0.0146 1.0232 0.0089 

(30,35,52) 0.5080 0.0110 0.5148 0.0081 0.7681 0.0208 0.7665 0.0156 1.0354 0.0131 1.0188 0.0079 

(30,35,60) 0.5067 0.0113 0.5134 0.0083 0.7658 0.0200 0.7649 0.0152 1.0365 0.0121 1.0211 0.0075 

(40,45,68) 0.5040 0.0085 0.5108 0.0067 0.7638 0.0155 0.7646 0.0123 1.0322 0.0102 1.0187 0.0063 

(40,45,75) 0.5057 0.0085 0.5117 0.0067 0.7640 0.0149 0.7645 0.0118 1.0298 0.0094 1.0178 0.0060 

(50,55,80) 0.5058 0.0062 0.5117 0.0051 0.7602 0.0120 0.7619 0.0101 1.0261 0.0073 1.0151 0.0046 

(50,55,85) 0.5033 0.0062 0.5094 0.0050 0.7608 0.0114 0.7626 0.0095 1.0260 0.0074 1.0151 0.0048 

Table 2. The AL and CP of ACI and HPD credible intervals of 1 2,α α and θ  when 1 2( , , ) (0.5,0.75,1)α α θ = . 

1 2( , , )n n m  

��
 ��� �� 

ACI HPD ACI HPD ACI HPD 

AL CP AL CP AL CP AL CP AL CP AL CP 

(10,15,18) 0.7008 0.920 0.5816 0.963 0.8479 0.937 0.7161 0.976 0.7456 0.931 0.6610 0.985 

(10,15,20) 0.7234 0.916 0.5903 0.964 0.8402 0.940 0.7101 0.974 0.7218 0.916 0.6437 0.972 

(15,20,26) 0.5598 0.921 0.4849 0.952 0.6976 0.932 0.6188 0.963 0.5985 0.934 0.5492 0.974 

(15,20,30) 0.5663 0.930 0.4923 0.968 0.6957 0.931 0.6161 0.955 0.5724 0.925 0.5284 0.976 

(20,25,34) 0.4822 0.922 0.4245 0.958 0.6215 0.934 0.5629 0.964 0.5109 0.947 0.4783 0.982 

(20,25,38) 0.4821 0.932 0.4252 0.955 0.6169 0.945 0.5594 0.958 0.4944 0.940 0.4638 0.974 

(25,30,42) 0.4298 0.938 0.3807 0.960 0.5618 0.942 0.5151 0.956 0.4526 0.941 0.4283 0.977 

(25,30,48) 0.4265 0.939 0.3789 0.947 0.5561 0.944 0.5103 0.950 0.4326 0.949 0.4106 0.977 

(30,35,52) 0.3916 0.943 0.3487 0.951 0.5178 0.952 0.4776 0.952 0.4059 0.942 0.3875 0.975 

(30,35,60) 0.3880 0.932 0.3476 0.957 0.5151 0.941 0.4765 0.954 0.3910 0.936 0.3741 0.973 

(40,45,68) 0.3367 0.933 0.3023 0.947 0.4537 0.937 0.4246 0.952 0.3513 0.929 0.3370 0.970 

(40,45,75) 0.3364 0.943 0.3029 0.949 0.4525 0.942 0.4242 0.958 0.3423 0.932 0.3295 0.965 

(50,55,80) 0.3031 0.944 0.2724 0.946 0.4086 0.949 0.3847 0.958 0.3181 0.950 0.3070 0.979 

(50,55,85) 0.3011 0.941 0.2710 0.957 0.4079 0.945 0.3855 0.953 0.3127 0.933 0.3068 0.973 
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Table 3. The AEs and MSEs of the ML and Bayes estimates of 1 2,α α and θ  when 1 2( , , ) (0.75,1.5,1)α α θ = . 

1 2( , , )n n m  
��
 ��� �� 

MLE Bayes MLE Bayes MLE Bayes 

AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE 

(10,15,18) 0.8291 0.117 0.7896 0.0398 1.7915 0.5450 1.5886 0.1295 1.1413 0.0865 1.0635 0.0302 

(10,15,20) 0.8652 0.2434 0.8008 0.0426 1.7768 0.5409 1.5775 0.1287 1.1345 0.0871 1.0612 0.0303 

(15,20,26) 0.7983 0.0671 0.7809 0.0312 1.6593 0.2703 1.5464 0.0979 1.1006 0.0462 1.0560 0.0217 
(15,20,30) 0.8131 0.0620 0.7940 0.0308 1.6497 0.2457 1.5432 0.1018 1.0892 0.0407 1.0520 0.0207 

(20,25,34) 0.7832 0.0397 0.7780 0.0244 1.6270 0.1659 1.5507 0.0807 1.0716 0.0290 1.0427 0.0157 

(20,25,38) 0.7894 0.0418 0.7801 0.0250 1.6180 0.1571 1.5422 0.0786 1.0682 0.0287 1.0420 0.0162 
(25,30,42) 0.7775 0.0285 0.7738 0.0191 1.5987 0.1303 1.5403 0.0672 1.0562 0.0225 1.0352 0.0135 

(25,30,48) 0.7743 0.0325 0.7693 0.0216 1.5786 0.1103 1.5263 0.0635 1.0468 0.0184 1.0289 0.0114 

(30,35,52) 0.7726 0.0233 0.7707 0.0169 1.5809 0.1139 1.5334 0.0624 1.0406 0.0165 1.0245 0.0103 
(30,35,60) 0.7711 0.0243 0.7689 0.0174 1.5765 0.1018 1.5293 0.0608 1.0412 0.0150 1.0269 0.0099 

(40,45,68) 0.7728 0.0166 0.7679 0.0168 1.5815 0.0747 1.5338 0.0571 1.0367 0.0122 1.0271 0.0096 

(40,45,75) 0.7773 0.0178 0.7648 0.0138 1.5604 0.0689 1.5164 0.0434 1.0277 0.0111 1.0209 0.0082 
(50,55,80) 0.7671 0.0137 0.7640 0.0113 1.5459 0.0603 1.5251 0.0401 1.0272 0.0094 1.0187 0.0064 

(50,55,85) 0.7594 0.0133 0.7619 0.0114 1.5553 0.0609 1.5197 0.0394 1.0279 0.0091 1.0263 0.0065 

Table 4. The AL and CP of ACI and HPD credible intervals of 1 2,α α and θ  when 1 2( , , ) (0.75,1.5,1)α α θ = . 

1 2( , , )n n m  
��
 ��� �� 

ACI HPD ACI HPD ACI HPD 

AL CP AL CP AL CP AL CP AL CP AL CP 

(10,15,18) 1.0638 0.942 0.8321 0.970 2.0546 0.977 1.4350 0.977 0.8642 0.944 0.7366 0.983 

(10,15,20) 1.1198 0.945 0.8440 0.973 2.0287 0.974 1.4246 0.974 0.8272 0.926 0.7099 0.980 
(15,20,26) 0.8300 0.929 0.7031 0.963 1.5884 0.964 1.2405 0.961 0.6874 0.942 0.6199 0.981 

(15,20,30) 0.8398 0.946 0.7155 0.977 1.5693 0.956 1.2353 0.958 0.6458 0.939 0.5885 0.974 

(20,25,34) 0.7011 0.940 0.6212 0.966 1.3737 0.965 1.1284 0.968 0.5819 0.946 0.5397 0.978 
(20,25,38) 0.7048 0.937 0.6234 0.959 1.3603 0.956 1.1218 0.960 0.5574 0.948 0.5193 0.974 

(25,30,42) 0.6209 0.950 0.5609 0.966 1.2208 0.953 1.0346 0.957 0.5139 0.947 0.4837 0.972 

(25,30,48) 0.6182 0.941 0.5585 0.956 1.1994 0.959 1.0232 0.955 0.484 0.951 0.4578 0.974 
(30,35,52) 0.5624 0.946 0.5153 0.954 1.1138 0.949 0.9591 0.953 0.4568 0.946 0.4345 0.976 

(30,35,60) 0.5604 0.940 0.5142 0.961 1.1048 0.948 0.9561 0.958 0.4348 0.941 0.4155 0.968 

(40,45,68) 0.4862 0.964 0.4662 0.936 0.9774 0.961 0.8823 0.947 0.3971 0.945 0.3894 0.956 
(40,45,75) 0.4884 0.950 0.4479 0.959 0.9599 0.953 0.8436 0.959 0.3788 0.946 0.3662 0.966 

(50,55,80) 0.4316 0.943 0.4038 0.955 0.8598 0.938 0.7722 0.950 0.3510 0.940 0.3395 0.973 

(50,55,85) 0.4277 0.950 0.4018 0.955 0.8652 0.953 0.7713 0.954 0.3511 0.945 0.3415 0.978 

 

5. Real Life Application 

Here, a real-world scenario is analyzed to showcase the 

applicability of the study. For this purpose, we consider the 

data set of successive failures time (in hours) of the air 

conditioning system of jet aeroplanes. The complete data set is 

given below: 

Plane 7909: Y ( 2n =29): 90, 10, 60, 186, 61, 49, 14, 24, 56, 

20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 44, 23, 62, 130, 

208, 70, 101, 208. 

Plane 7913: X ( 1n =27): 97, 51, 11, 4, 141, 18, 142, 68, 77, 

80, 1, 16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 

18, 163, 24. 

This data set is previously used by Agiwal [1] for the 

inverse Chen distribution. Before using the above data sets for 

our study first, we need to check that is these data sets fit the 

inverse Chen distribution or not. To check the fitting of the 

data sets, we use Kolmogorov-Smirnov (K-S) test. The value 

of K-S statistic and p-value for both the data set X are 0.2306  

and 0.1132 , respectively. Similarly, the value of K-S statistic 

and p-value for data set Y are 0.1438  and 0.5863 , 

respectively. From the p-values obtained from the K-S test, we 

can say that both the data sets fit the ICD well. 

The ML and Bayes estimates are now computed together 

with their respective ACI and HPD credible intervals. The 

Bayes estimates are calculated using 10,000  MCMC 

samples with a burn-in period of 4,000 . The Bayes estimates 

are calculated in the case of non-informative prior as no prior 

information is available. To calculate the ML and the Bayes 

estimates of the parameters �  is chosen such that 

35, 40,45,50m = . The estimated values are shown in the 

following Tables 5 and 6. 

Table 5. The ML and Bayes estimates of ��, �� and � for the real data set. 

1 2( , , )n n m  
��
 ��� �� 

MLE Bayes MLE Bayes MLE Bayes 

(27,29,35) 5.3470 4.7669 12.1899 9.9691 0.6011 0.5625 

(27,29,40) 5.7256 5.2048 14.0294 11.5420 0.6420 0.6036 

(27,29,45) 6.0172 5.5166 12.4561 10.7189 0.6448 0.6131 

(27,29,50) 6.3544 5.8531 13.9942 11.9332 0.6776 0.6504 
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Table 6. The ACI and HPD credible intervals of ��, �� and � for the real data set. 

1 2( , , )n n m  
��
 ��� �� 

ACI HPD ACI HPD ACI HPD 

(27, 29, 35) (2.6458,8.0481) (3.1598,6.5246) (3.3840,20.9959) (6.3269,13.3289) (0.4415,0.7608) (0.4654,0.6624) 

(27, 29, 40) (2.9034,8.5477) (3.2847,7.2269) (4.0318,24.0271) (7.4624,15.8579) (0.4850,0.7989) (0.5083,0.7097) 

(27, 29, 45) (3.1259,8.9085) (3.5954,7.4526) (4.1583,20.7540) (6.9523,14.5628) (0.4976,0.7920) (0.5144,0.7164) 

(27, 29, 50) (3.3619,9.3469) (3.8839,8.1174) (4.7894,23.1989) (7.7907,16.2899) (0.5326,0.8225) (0.5590,0.7709) 

 

6. Conclusion 

In this article, the problem of estimation of unknown 

parameters of inverse Chen distribution under joint type-II 

censoring was considered. To estimate the unknown 

parameters, the ML and Bayes estimates were obtained as 

point estimates with their corresponding interval estimates as 

asymptotic confidence and HPD credible interval estimates. 

The Bayes estimates were calculated under SELF. The Bayes 

estimates were obtained MCMC techniques. To compare the 

different estimates obtained throughout the study, a simulation 

study was carried out. From the results obtained in the 

simulation study, we can conclude that both ML and Bayes 

estimates provide good estimates of the unknown parameters. 

The Bayes estimates perform better than ML estimates in view 

of MSEs. The HPD credible intervals provide better interval 

estimates than ACI. All the interval estimates attain their 

nominal level of significance. Finally, for illustrative purposes, 

a pair of real data were analyzed. 
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