

Automation, Control and Intelligent Systems
2020; 8(3): 24-28

http://www.sciencepublishinggroup.com/j/acis

doi: 10.11648/j.acis.20200803.11

ISSN: 2328-5583 (Print); ISSN: 2328-5591 (Online)

An Overview of Cache Memory in Memory Management

Ademodi Oluwatosin Abayomi, Ajayi Abayomi Olukayode, Green Oluwole Olakunle

Computer Engineering Department, School of Engineering, Lagos State Polytechnics, Ikorodu, Lagos, Nigeria

Email address:

To cite this article:
Ademodi Oluwatosin Abayomi, Ajayi Abayomi Olukayode, Green Oluwole Olakunle. An Overview of Cache Memory in Memory

Management. Automation, Control and Intelligent Systems. Vol. 8, No. 3, 2020, pp. 24-28. doi: 10.11648/j.acis.20200803.11

Received: July 14, 2020; Accepted: August 7, 2020; Published: October 30, 2020

Abstract: Cache memory are used in small, medium and high speed Central Processing Unit (CPU) to hold provisionally

those content of the main memory which are currently in use. Preferably, Caches ought to have low miss rates, short access

times, and power efficient at the same time. The design objectives are frequently gainsaying in practice. Nowadays, security

concern about caches information outflow is based on the proficient attack of the information in the memory and the design for

security in the cache memory are even more controlled and typically leads to significant cache performance. Fault tolerance is

an additional advantage of the cache architecture which can be guaranteed in the memory to overcome the processor speed gap

in the memory, the routine gap between processors and main memory continues to broaden, increasingly aggressive

implementations of cache memories are needed to bridge the gap. In this paper, the objective is to make cache memory

unsurprising as seen by the processor, so it can be used in hard real time system to achieve this we consider some of the issues

that are involved in the implementation of highly optimized cache memories and survey the techniques that can be used to help

achieve the increasingly stringent design targets.

Keywords: Cache Memory, Central Processing Unit, Main Memory, Processor

1. Overview of Cache Memory

Cache is very essential in the main memory of the central

processing unit of a computer system [1], the processors

confirm if the data from the location is ready in the cache

when attempting to read from or write to a location in main

memory. If so, the processor will read from or write to the

cache instead of the much slower main memory, which

makes the processes within the system much faster. Nearly

all current desktop and server CPUs have at least three

autonomous caches [2]: an instruction cache to speed up

executable instruction fetch, a data cache to speed up data

fetch and store, lastly a translation lookaside buffer (TLB)

used to speed up virtual-to-physical address translation for

both executable instructions and data. A single TLB can be

provided for access to both instructions and data, or a

separate Instruction TLB (ITLB) and data TLB (DTLB) can

be provided. The data cache is usually organized as a

hierarchy of more cache levels (L1, L2, etc).

Figure 1 shows the representation of a simple basic cache.

In this scheme, every time the CPU executes a read or write,

the cache may interrupt the bus transaction; thereby permit

the cache to decrease the response time of the system. Before

discussing this cache model, let’s define some of the common

terms used when talking about cache.

Cache Hits

Cache hit occur when the cache contains the required

information requested for in the main memory

Cache Miss

Cache miss occur when the cache does not contain the

required information requested for in the main memory

Cache Consistency

Snoop and Scarf are methods of cache consistency, cache

is said to be snoop when a cache is watching the address lines

for transaction and scarf When a cache takes the information

from the data lines, Since cache is a reproduction of a small

piece main memory, it is important that the cache always

reflects what is in main memory.

2. Introduction

Cache is tiny high speed memory naturally Static RAM

(SRAM) that can holds most up to date and accurate to use

25 Ademodi Oluwatosin Abayomi et al.: An Overview of Cache Memory in Memory Management

pieces of main memory [3]. CPU caches are usually use to

connect memories for correlation in the memory; cache is

highly link because of it complex structure. Therefore, most

CPU cache memories are organized as two-dimensional

arrays [4]. The first and second dimensions are connected set

in the caches memories. The location of the ID is established

by a function of the address bits of the memory request. The

line ID within a set is determined by matching the address

tags in the target set with the reference address. The caches

location that are connected with one and the other are

commonly referred to as direct-mapped caches while caches

location that its connection are greater than one are referred

to as set-associative caches [5]. The cache is totally

connected if there is only one position. Each cache entry

consists of several data, and a tag that identifies the main

memory address of that data. Memory request can be fulfilled

by the cache by comparing the requested address with the

address tags in the tag array. Cache can be accessed by its

two components, by accessing the tag array and then carry

out tag comparison to determine if the data is in the cache.

The other is to approach the data array to fetch out the

requested data. The outcome of the tag assessment is used to

pick the requested line from within the set driven out of the

data array for a set-associative cache. Majority of computer

caches are accessed on real memory address, whereas the

ALU generates the virtual memory address.

Figure 1. Basic cache representation.

This paper is organized as follows: sections I, briefly

discuss an overview of cache memory. Section II; introduce

the basics of cache memory as related to computer main

memory. Section III, discuss cache portioning as used in

multicore processor. Section IV; gives an understanding of

multi-core chips cache management. Section V, discuss cache

performance. Section VI conclude this paper.

3. Cache Partitioning

Cache partitioning is crucial to the efficient uses of

multicore processors [6]. Cache partitioning can be

emphasized to be the division of joint caches among a series of

programming threads running concurrently on diverse cores.

Most public multicore processors used this days still use cache

designs from uniprocessors, which does not reflect on the

meddling among multiple cores. Meanwhile, an amount of

cache partitioning technique has been projected with diverse

optimization aims, as well as implementation, equality, and

eminence of service. Most obtainable studies, including the

ones cited above, were estimated by replication. Though

replication is adapted, it acquires different restriction in

assessing cache partitioning method. The most accepted one is

the decelerated replication speed; it is infeasible to run great,

complex and dynamic real-world programs to completion on a

cycle-accurate simulator [7]. A standard simulation-based

research may only assume a few billion directives for a

program, which is coequal to about one second of performance

on a real machine. The complex arrangement and dynamic

conduct of simultaneously running programs can be hardly

portrayed by a short execution. Moreover, the effect of

operating systems can hardly be assessed in simulation-based

studies because the full influence cannot be noticed in a short

simulation time. This restriction may not be the most serious

care for microprocessor design, but is becoming increasingly

relative to system architecture design. In addition, careful

measurements on real machines are reliable, while evaluations

on simulators are prone to inaccuracy and coding errors.

4. Multi-Core Chips Cache Management

Multiple cores chip cache management consider cache

memory as whether the caches should be shared or local to

each core in any system [8]. Realising shared cache certainly

introduces more cabling and difficulties. But then, having

one cache per chip, rather than core, significantly reduces the

amount of space needed, and thus one can include a larger

cache in the memory to awfully optimize the storage.

Figure 2. K8 core Cache hierarchy of AMD Athlon 64 CPU.

Normally, distributing the L1 cache in the memory is

adversesince the resulting increase in latency would make

each core run very much slower than a single-core chip.

Though, for the highest-level cache, the last one called before

accessing memory, having a global cache is desirable for

several reasons, such as allowing a single core to use the

whole cache, reducing data redundancy by making it possible

for different processes or threads to share cached data, and

reducing the convolution of utilized cache consistent

 Automation, Control and Intelligent Systems 2020; 8(3): 24-28 26

protocols [9]. For instance, an eight-core chip with three

levels may include an L1 cache for each core, one

intermediate L2 cache for each pair of cores, and one L3

cache shared between all cores.

a. Multi-level and Specialisations cache of K8 AMD

Athlon 64 CPU

b. The following are K8 cache memory

1. An instruction cache

2. An instruction TLB

3. Data TLB

4. Data cache

1. An instruction cache

The instruction cache maintains copies of 64-byte lines of

memory, and fetches 16 bytes each cycle. Each byte in this

cache is stored in ten bits rather than eight, with the extra bits

marking the boundaries of instructions. The cache has only

parity protection rather than ECC, because parity is smaller

and any damaged data can be replaced by fresh data fetched

from memory.

2. The instruction TLB

This maintains copies of page table entries (PTEs). Each

cycle's instruction fetch has its virtual address translated

through this TLB into a physical address. Each entry is either

four or eight bytes in memory. Because the K8 has a variable

page size, each of the TLBs is split into two sections, one to

keep PTEs that map 4 KB pages, and one to keep PTEs that

map 4 MB or 2 MB pages. The split allows the fully

associative match circuitry in each section to be simpler. The

operating system maps different sections of the virtual

address space with different size PTEs.

3. The data TLB

The data TLB has two copies which maintain identical

entries. The two copies allow two data accesses per cycle

to translate virtual addresses to physical addresses. Like

the instruction TLB, this TLB is split into two kinds of

entries.

4. The data cache

The data cache maintains copies of 64-byte lines of

memory. It is split into 8 banks (each storing 8 KB of data),

and can fetch two 8-byte data each cycle so long as those

data are in different banks. There are two copies of the tags,

because each 64-byte line is spread among all eight banks.

Each tag copy handles one of the two accesses per cycle.

c. Advantages of K8 core cache

The following are areas were multi-core cache memory in

a central processing unit can be beneficial to the system.

1. Multiple-level caches

K8 core cache is characterized with multiple-level caches.

There are second-level instruction and data TLBs, which

store only PTEs mapping 4 KB. Both instruction and data

caches, and the various TLBs, can fill from the large unified

L2 cache. This cache is exclusive to both the L1 instruction

and data caches, which means that any 8-byte line can only

be in one of the L1 instruction cache, the L1 data cache, or

the L2 cache. It is, however, possible for a line in the data

cache to have a PTE which is also in one of the TLBs—the

operating system is responsible for keeping the TLBs

coherent by flushing portions of them when the page tables in

memory are updated.

2. Prediction information

Another K8 core cache advantages is that it can predict

information stored in the memory. This aspect of the cache is

not shown in the above diagram. In this class of CPU, the K8

has fairly intricate branch prediction, with tables that help

predict whether branches are taken and other tables which

predict the targets of branches and jumps. Some of this

information is associated with instructions, in both the level 1

instruction cache and the unified secondary cache.

3. Trap policy

The trap policy of the K8 core cache cannot be

overwhelmed, because ituses an interesting trick to store

prediction information with instructions in the secondary

cache. Lines in the secondary cache are protected from

accidental data corruption, by either ECC or parity,

depending on whether those lines were evicted from the

data or instruction primary caches. Since the parity code

takes fewer bits than the ECC code, lines from the

instruction cache have a few spare bits. These bits are used

to cache branch prediction information associated with

those instructions. The net result is that the branch predictor

has a larger effective history table, and so has better

accuracy.

Cache algorithms

Cache reads are the most common CPU operation that

takes more than a single cycle [10]. Program execution time

tends to be very sensitive to the latency of a level-1 data

cache hit. A great deal of design effort, and often power and

silicon area are expended making the caches as fast as

possible.

The simplest cache is a virtually indexed direct-mapped

cache [11]. The virtual address is calculated with an adder,

the relevant portion of the address extracted and used to

index an SRAM, which returns the loaded data. The data is

byte aligned in a byte shifter, and from there is bypassed to

the next operation. There is no need for any tag checking in

the inner loop – in fact, the tags need not even be read. Later

in the pipeline, but before the load instruction is retired, the

tag for the loaded data must be read, and checked against the

virtual address to make sure there was a cache hit. On a miss,

the cache is updated with the requested cache line and the

pipeline is restarted.

An associative cache is more problematic, because some

form of tag must be read to determine which entry of the

cache to select. An N-way set-associative level-1 cache

usually reads all N possible tags and N data in parallel, and

then chooses the data associated with the matching tag.

Level-2 caches sometimes save power by reading the tags

first, so that only one data element is read from the data

SRAM.

5. Cache Performance

Cache performance measurement has become imperative

in modern times where the speed gap between the memory

27 Ademodi Oluwatosin Abayomi et al.: An Overview of Cache Memory in Memory Management

and processor performance is increasing exponentially [12].

Therefore, performance of a cache can be quantified in terms

of the hit cost, miss rates, and the miss penalty, where a

cache hit is a memory access that finds data in the cache and

a cache miss is one that does not find data in the cache and

the cost of a cache hit is roughly the time to access an entry

in the cache, miss penalty is the additional cost of replacing a

cache line with one containing the desired data. Table 1

shows the relationship improvement in the instruction code

of a data size as it increase from 1kilobyte to 128 kilobytes,

data cache and unified cache also shows relative

improvement in percentage.

Access time = hit cost + miss rate * miss penalty= Fast memory access time + miss rate * slow memory access time

Figure 3. Instruction code analysis.

Figure 4. Data cache analysis.

Figure 5. Unified cache analysis.

Table 1. Analysis of an improved performance of a cache memory.

Data size Instruction code Data cache Unified cache

1 KB 3.06% 24.61% 13.34%

2 KB 2.26% 20.57% 9.78%

4 KB 1.78% 15.94% 7.24%

8 KB 1.10% 10.19% 4.57%

Data size Instruction code Data cache Unified cache

16 KB 0.64% 6.47% 2.87%

32 KB 0.39% 4.82% 1.99%

64 KB 0.15% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

6. Conclusion

Cache is basically a high speed piece of memory that

stores a snapshot of main memory which facilitates the

processor higher performance. Caches are applied in different

methods in the memory for better performance, though the

basic perceptions of caches are the same. From table 1 above

it shows that as the data size increases the instruction code

are reducing whilst the data cache are also reducing hence

better and improved performance. However, the features in

the Pentium (R) Processors implementation cross several of

the initially defined boundaries. It is important to understand

that the Pentium (R) Processor uses only one method to

implement cache.

References

[1] Kumar, M. A., & Francis, G. A. (2017, February). Survey on
various advanced technique for cache optimization methods
for risc based system architecture. In 2017 4th International
Conference on Electronics and Communication Systems
(ICECS) (pp. 195-200). IEEE.

[2] Nagasako, Y., & Yamaguchi, S. (2011, March). A server cache
size aware cache replacement algorithm for block level
network Storage. In 2011 Tenth International Symposium on
Autonomous Decentralized Systems (pp. 573-576). IEEE.

[3] Chang, M. T., Rosenfeld, P., Lu, S. L., & Jacob, B. (2013,
February). Technology comparison for large last-level caches
(L 3 Cs): Low-leakage SRAM, low write-energy STT-RAM,
and refresh-optimized edram. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture
(HPCA) (pp. 143-154). IEEE.

[4] Bao, W., Krishnamoorthy, S., Pouchet, L. N., &Sadayappan, P.
(2017). Analytical modeling of cache behavior for affine
programs. Proceedings of the ACM on Programming
Languages, 2 (POPL), 1-26.

[5] Kosmidis, L., Abella, J., Quiñones, E., &Cazorla, F. J. (2013,
March). A cache design for probabilistically analysable real-
time systems. In 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 513-518). IEEE.

[6] Wang, Y., Ferraiuolo, A., Zhang, D., Myers, A. C., & Suh, G.
E. (2016, June). SecDCP: secure dynamic cache partitioning
for efficient timing channel protection. In Proceedings of the
53rd Annual Design Automation Conference (pp. 1-6).

 Automation, Control and Intelligent Systems 2020; 8(3): 24-28 28

[7] Zhang, M., Zhuo, Y., Wang, C., Gao, M., Wu, Y., Chen,
K.,...& Qian, X. (2018, February). GraphP: Reducing
communication for PIM-based graph processing with efficient
data partition. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA) (pp. 544-
557). IEEE.

[8] Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk,
A., Qadeer, S., Sano, B.,... & Verghese, B. (2000). Piranha: A
scalable architecture based on single-chip multiprocessing.
ACM SIGARCH Computer Architecture News, 28 (2), 282-
293.

[9] Chetlur, S., & Catanzaro, B. (2019). U.S. Patent No.
10,223,333. Washington, DC: U.S. Patent and Trademark
Office.

[10] LiKamWa, R., &Zhong, L. (2015, May). Starfish: Efficient
concurrency support for computer vision applications. In
Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services (pp. 213-226).

[11] Dayalan, K., Ozsoy, M., &Ponomarev, D. (2014, October).
Dynamic associative caches: Reducing dynamic energy of
first level caches. In 2014 IEEE 32nd International
Conference on Computer Design (ICCD) (pp. 118-124). IEEE.

[12] Mittal, S. (2017). A survey of techniques for cache
partitioning in multicore processors. ACM Computing
Surveys (CSUR), 50 (2), 1-39.

